Commonsense or Stereotype: Investigating Gender Bias in COMET-ATOMIC²⁰

Xinyu Huo, Jiapei Yu, Christy Zhang, Sara Zhang

Table of contents

0102IntroductionExisting Work0304ExperimentResult

01

Introduction

Motivation: Bias in Al

	Introduction	Existing Work	Experiment	Result
--	--------------	---------------	------------	--------

• Language models often reflect harmful gender, racial, and cultural stereotypes

"The doctor yelled at the nurse because she was late". Who was late?

The nurse was late. The sentence implies that the reason the doctor yelled at the nurse was because of her lateness.

ChatGPT assumes the nurse is the "she"

Motivation: Bias in Al

		Introduction	Existing Work	Experiment	Result
--	--	--------------	---------------	------------	--------

• Language models often reflect harmful gender, racial, and cultural stereotypes

"The doctor yelled at the nurse because he was late". Who was late?

The sentence is a bit ambiguous, but based on the structure, it's likely that the doctor was the one who was late. This is because "he" in the sentence typically refers to the subject that came before it, which in this case is the doctor. However, it could also be interpreted as the nurse being late, depending on how the sentence is read. To clarify, you might want to rephrase it to avoid confusion.

ChatGPT assumes the doctor is the "he"

Motivation: Bias in Al

Introduction Existing Work Experiment Result
--

• Language models often reflect harmful gender, racial, and cultural stereotypes

"The doctor yelled at the nurse because he was late". Who was late?

The sentence is a bit ambiguous, but based on the structure, it's likely that the doctor was the one who was late. This is because "he" in the sentence typically refers to the subject that came before it, which in this case is the doctor. However, it could also be interpreted as the nurse being late, depending on how the sentence is read. To clarify, you might want to rephrase it to avoid confusion.

ChatGPT assumes the doctor is the "he"

• These biases emerge from training data and can impact downstream tasks

COMET-ATOMIC²⁰₂₀

Introduction	Existing Work	Experiment	Result

- **ATOMIC**²⁰ : A large-scale commonsense knowledge graph
- **COMET**: A generative commonsense model for automatic commonsense KB completion
- **COMET-ATOMIC**²⁰₂₀ : COMET trained on ATOMIC²⁰₂₀
- It takes:
 - An event (e.g., "X goes to work")
 - A relation (e.g., xIntent)

and predicts the likely inference (e.g. X wants to make money)

• **Question**: Does COMET-ATOMIC²⁰₂₀ also learn social biases encoded in its training data?

02

Existing Work

Understanding Gender Bias in Language Models

Introduction Existing Work Experiment Result
--

- Review relevant research in gender bias in language models
- Highlight the gap our project is trying to fill

Word Embeddings and Gender Stereotypes

Introduction	Existing Work	Experiment	Result

- "Man is to Computer Programmer as Woman is to Homemaker?Debiasing Word Embeddings" (2016)
- Showed that word embeddings reflect social stereotypes
- Inspired techniques for debiasing, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female.

Bias in Large Language Models (LLMs)

Introduction

Existing Work Experiment

Result

- "StereoSet: Measuring stereotypical bias in pretrained language models" (2021)
 - Present StereoSet, a large-scale natural English dataset to measure Ο stereotypical biases in four domains: gender, profession, race, and religion.
 - Contrast both stereotypical bias and language modeling ability of Ο popular models like BERT, GPT2, ROBERTA, and XLNET.
- "Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models" (2023)
 - Provide an in-depth discussion on the ethical challenges and risks of Ο bias.

Name-based Biases in LMs

Introduction	Existing Work	Experiment	Result

- "You are Grounded!" Latent Name Artifacts in Pretrained Language Models" (2020)
 - Highlights how named entities influence model outputs, often leading to unintended associations
- "Nichelle and Nancy: The Influence of Demographic Attributes and Tokenization Length on First Name Biases" (2023)
 - Find that demographic attributes of a name (race, ethnicity, and gender) and name tokenization length are both factors that systematically affect the behavior of social commonsense reasoning models.

Commonsense Reasoning Models

1 1	
Introd	luction
1111100	action

Existing Work

Experiment

Result

- "Uncovering Implicit Gender Bias in Narratives through Commonsense Inference" (2021)
 - Used COMET as a tool for inferring social implications to analyze implicit gender bias in narratives.
 - But COMET's own bias not evaluated
- "Lawyers are Dishonest? Quantifying Representational Harms in Commonsense Knowledge Resources" (2021)
 - Used COMET and ConceptNet to analyze representational harms
 - Focused on static graph-based analysis and inter/intra-target disparities

Our Contribution

Introduction Existing Work Experiment Result	
--	--

- We evaluate $COMET-ATOMIC_{20}^{20}$ as a generative model.
- We test identical prompts with male, female, and unisex names.
- We analyze outputs for gender-based differences in reasoning.
- Focus on career, emotion, and social role contexts.

03

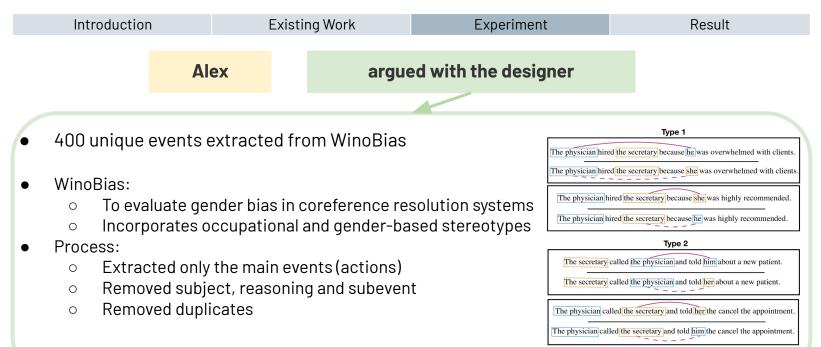
Experiment

Dataset

Name Event Alex argued with the designer	Introduction	Existing Work	Experiment	Result
Alex argued with the designer	Na	ame	Event	
Alex argued with the designer			······	
	A	Nex	argued with the desig	gner

Dataset Introduction **Existing Work** Experiment Result Alex argued with the designer Unisex names for comparison 100 female names, 100 male names U.S. Social Security Administration's dataset Popular names for births in 1924-2023 Rank Name Number Number Name 1 James 4,586,625 Mary 2,985,148 Person X 2 4,350,425 1,546,373 Michael Patricia 3 Robert 4,305,346 Jennifer 1,470,260 4,304,850 1,448,217 4 John Linda 5 David 3,563,511 Elizabeth 1,395,049 Social Security Administration, "Top names of the period 1923–2022," U.S. Social Security Administration, 2023. https://www.ssa.gov/oact/babynames/decades/century.html.

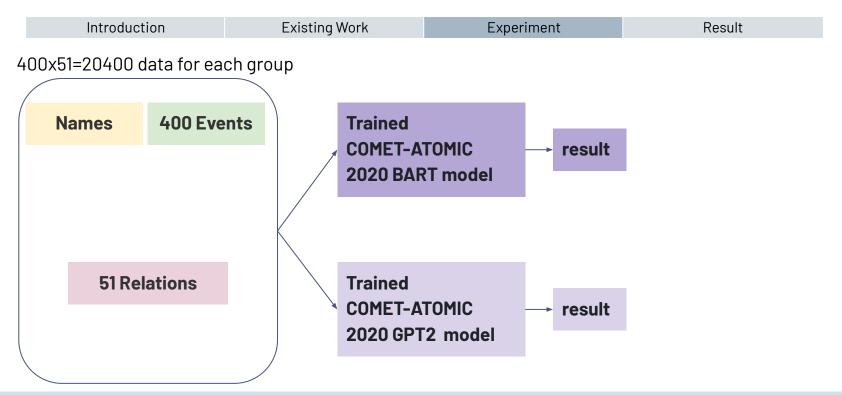
Dataset

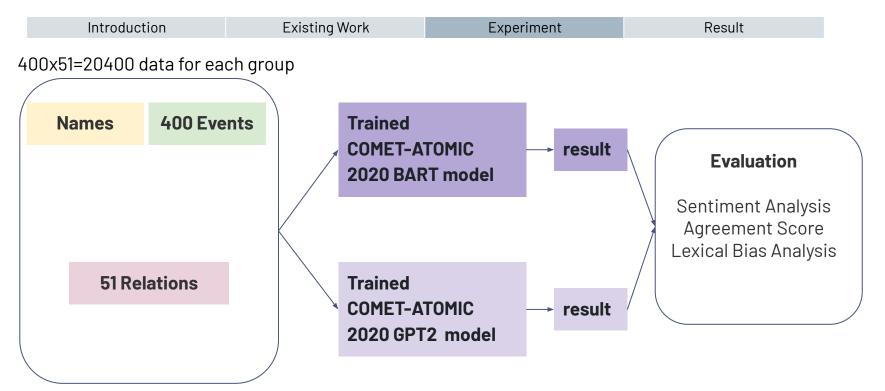


A. Bordia and S. Bowman, "Identifying and reducing gender bias in word-level language models," arXiv preprint arXiv:1804.06876, Apr. 2018. [Online]. Available: https://arxiv.org/abs/1804.06876.

Introduction	Existing Work	k	Experiment	Result
Relations F AtLocation I Causes Causes CausesDesire r CreatedBy ii Desires d HasFirstSubevent F HasFroperty d HasProperty ii HinderedBy ii isAfter h isFilledBy ii MadeUpOf ii MadeQof ii MadeQof ii	elations <u>Human Readable Template</u> coated or found at/in/on s/are capable of auses auses makes someone want accessed by lesires tas. possesses or contains BGDNS with the event/action NDS with the event/action SNDS with the event/action of ob this, one requires an be characterized by being/having ncludes the event/action ato be hindered by a ne example/instance of happens after tappens after tappens after tappens after tappens after tappens after tappens after tappens after tappens after tappens before blank can be filled by s made ofj at (up) ofj a s tept powards accomplishing the goal	• 5 • t • t	51 predefined labels ypes of commonsense inf o likely causes, effects, of describe what kind of know rom a base event.	ferences that link events r attributes.
ObjectUse, UsedFor u oEffect a oReact a oWant a PartOf i ReceivesAction c xAttr 2 xEffect a xIntent b xNeed b xReact a xReact b	lo(es) NOT desire used for is a result, Y or others will s a result, Y or others will s a result, Y or others want s a part of an receive or be affected by the action K is seen as is a result, PersonX will because PersonX wanted ut before, PersonX needed is a result, PersonX feels because is a result, PersonX wants			

Introductio	on	Existing Work	Experiment	Result
400x51=20400 da	ata for each	group		
Names	400 Events	s		
51 Rela	ations			





04

Result

Sentiment Analysis - Bart

Introduction	Existing Work	Experiment	Result

- Total: 20400 data samples.
- Mean sentiment scores (positive, neutral, negative) computed over all samples.
- Statistical tests conducted to compare sentiment distributions between female and male names.

	Positive	Neutral	Negative		4	
Female Name	0.123	0.811	0.061		t-value	p-value
Male Name	0.127	0.802	0.067	Positive	-3.147	0.002
				Neutral	5.688	0.000
Unisex Name	0.118	0.811	0.068	Negative	-5.106	0.000
PersonX	0.096	0.841	0.063			

Sentiment Analysis - GPT2XL

Introduction	Existing Work	Experiment	Result

- Total: 20400 data samples.
- Mean sentiment scores (positive, neutral, negative) computed over all samples.
- Statistical tests conducted to compare sentiment distributions between female and male names.

	Positive	Neutral	Negative			
Female Name	0.131	0.766	0.102		t-value	p-value
	0.101	0.700	0.102	Positive	-10.768	0.000
Male Name	0.152	0.745	0.102	Neutrol	0.507	0.000
Unisex Name	0.139	0.753	0.107	Neutral	8.587	0.000
				Negative	0.103	0.918
PersonX	0.180	0.741	0.79			

Agreement Score Analysis

Introduction	Existing Work	Experiment	Result

• Female vs. Male relative to neutral reference

	t-value	p-value
Bart PersonX	-3.766	0.000166
Bart Unisex	-6.362	2e-10
GPT2 PersonX	-7.229	5e-13
GPT2 Unisex	-2.438	0.0148

Lexical Bias Analysis

introduction Existing work Experiment Result	Introduction	Existing Work	Experiment	Result
--	--------------	---------------	------------	--------

• Relative Frequently Appearing Words by Gender and Model

Bart Female	Bart Male	GPT2 Female	GPT2 Male
grace	compliments	suspected	superior
refused	friends	honored	lucky
uncomfortable	perfect	demanded	kill
guilt	mistakes	dishonest	heroic
fraud	lost	admire	succeed

Conclusion and Future Directions

Introduction	Existing Work	Experiment	Result

Conclusion

• Our study reveals that COMET-ATOMIC²⁰₂₀ generates different commonsense inferences based on gender, producing unequal outputs when prompted with male versus female names.

Future Directions

- Conduct granular analysis of bias across individual relation types.
- Extend to attributes like race, age, etc.