Enhancing Digital Privacy:

Utilizing YOLOv8n for Sensitive Information Detection in WeChat Screenshots

Sara Zhang

Table of contents

01 02

Introduction Methodology

03 04

Experiment Summary

01

Introduction

Introduction Methodology Experiment Summary

Digital Records Sharing Digital Privacy

Introduction Methodology Experiment Summary

Objective: safeguarding the private information displayed on screenshots before sharing

Introduction Methodology Experiment Summary


Objective: safeguarding the private information displayed on screenshots before sharing

Introduction Methodology Experiment Summary

Objective: safeguarding the private information displayed on screenshots before sharing

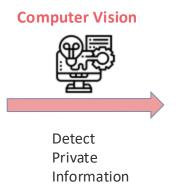
Detect Private Information

Introduction Methodology Experiment Summary

Objective: safeguarding the private information displayed on screenshots before sharing

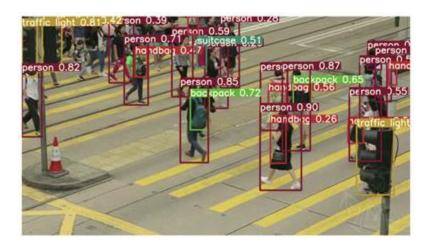
Detect Private Information

Anonymizing private information



Introduction Methodology Experiment Summary

Objective: safeguarding the private information displayed on screenshots before sharing



Object Detection

Introduction Methodology Experiment Summary

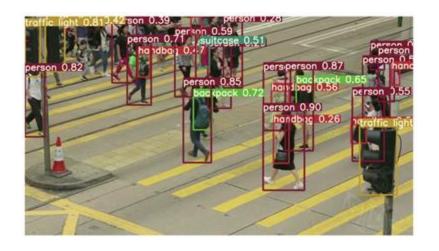
Goal: answer "what objects are where?"

Object Detection

Introduction Methodology Experiment Summary

Goal: answer "what objects are where?"

coordinates of the objects + Confidence level

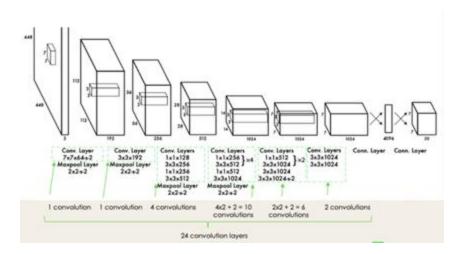

Object Detection

Introduction Methodology Experiment Summary

Goal: answer "what objects are where?"

Algorithms:

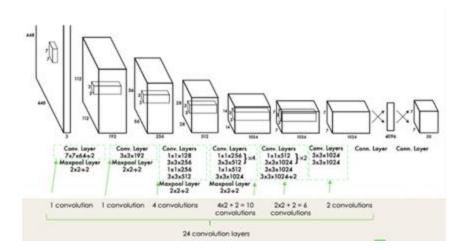
- Histogram of Oriented Gradients(HOG)
- Region-based Convolutional Neural Networks (R-CNN)
- Region-based Fully Convolutional Network (R-FCN)
- YOLO (You Only Look Once)


02

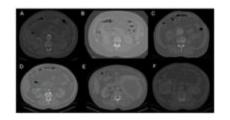
Methodology

Model Overview: YOLOv8

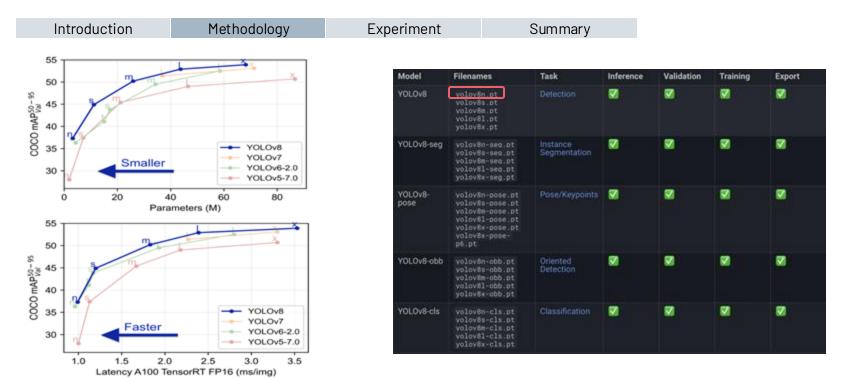
Introduction Methodology Experiment Summary


You Only Look Once (YOLO): state-of-the-art, realtime object detection algorithm firstly introduced in 2015

Model Overview: YOLOv8


Introduction Methodology Experiment Summary

You Only Look Once (YOLO): state-of-the-art, realtime object detection algorithm firstly introduced in 2015


Advantages:

- Speed
- Detection accuracy
- Good generalization
- Open-source
- Broad scope of applications

Model Overview: YOLOv8

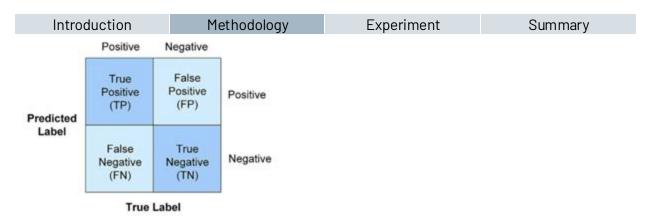
Loss Function

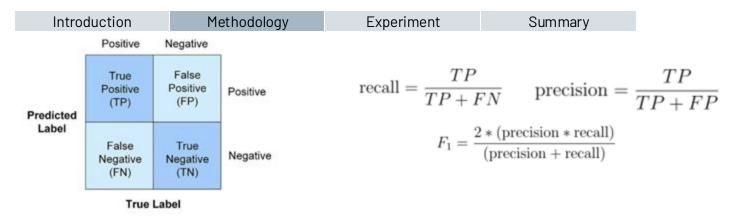
Introduction Methodology Experiment Summary

Box Loss:


Measures how accurately the model locates objects within their bounding boxes.

Classification Loss:


Ensures objects are correctly classified according to their labels.



Distribution Focal Loss: Addresses class imbalance within the object detection process.

1.5

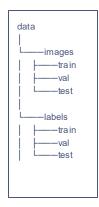
- Recall: The ability of the model to identify all instances of objects in the images.
- Precision: The accuracy of the detected objects, indicating how many detections were correct.

	Introduction	Methodology	Experiment	Summary	
0	Intersection ove	er Union (IoU)	$IoU = \frac{\text{(Area of Inter})}{\text{(Area of U)}}$		A B

	Introduction	Methodology	Experiment	Summary	
0	Intersection ove	er Union (IoU)	$IoU = \frac{\text{(Area of Inter})}{\text{(Area of U})}$		= A B

- mAP50: It's a measure of the model's accuracy considering only the "easy" detections.
- mAP50-95: It gives a comprehensive view of the model's performance across different levels of detection difficulty.

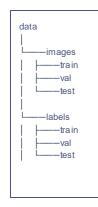
03


Experiment

Introduction	Methodology	Experiment	Summary
		=//6011110111	

- Datasets:
 - o 130 WeChat **screenshots** (93 for training, 25 for validation, 12 for testing)

Introduction Methodology Experiment Summary


Datasets:

o 130 WeChat screenshots (93 for training, 25 for validation, 12 for testing)

Introduction Methodology Experiment Summary

Datasets:

- o 130 WeChat screenshots (93 for training, 25 for validation, 12 for testing)
- o 510 instances of **personal information**

manually annotated through Computer Vision Annotation Tool (CVAT)

Introduction Methodology Experiment Summary

Datasets:

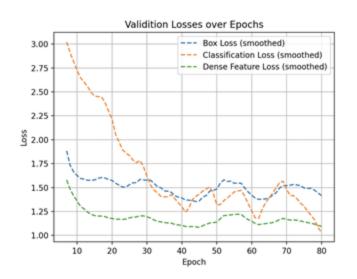
Model Training

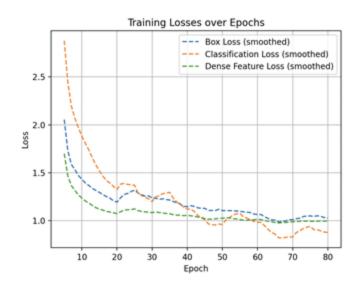
Introduction Methodology Experiment Summary

Environment: colab

Training Settings:

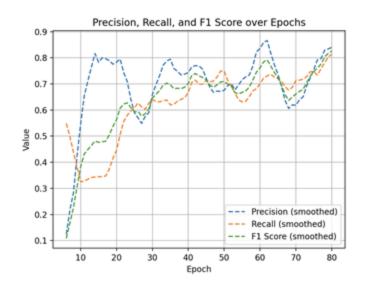
batch size = 16, learning rate = $0.01 \sim 0.01$ momentum = 0.937, and weight decay = 0.0005.

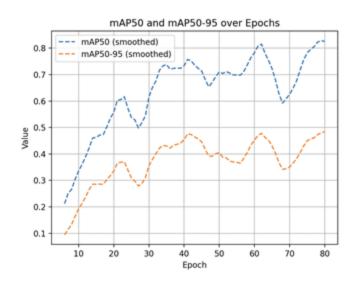

Augmentation Settings and Hyperparameters:


hue, saturation, brightness, rotation, translation, scaling, and shearing

See YOLO document: https://docs.ultralytics.com/modes/train/#train-settings

Model Training


Introduction	Methodology	Experiment	Summary
			,



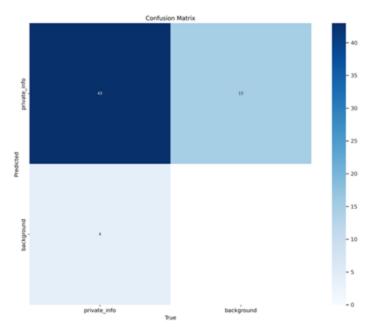
Model Training

Introduction	Methodology	Evneriment	Summary
IIIII Ouuction	i i c triodology	Lxperiment	Surrinary

Introduction	Methodology	Experiment	Summary
IIIII Oddetion	Hethodology	Lyberillietit	Sullillal y

• Tested on 12 images with 47 instances

Introduction Methodology Experiment Summary


• Tested on 12 images with 47 instances

• **Precision: 96.8%**

• Recall: 85.1%

mAP50: 95.2%

• mAP50-95: 65.8%

Introduction Methodology Experiment Summary

• Example Ground Truth:

Introduction Methodology Experiment Summary

• Example Ground Truth:

Example Test Predictions:

04

Summary

Introduction Methodology Experiment Summary

Deep Learning for Privacy:

Project employs YOLOv8 to boost privacy in screenshot sharing.

Introduction Methodology Experiment Summary

Deep Learning for Privacy:

Project employs YOLOv8 to boost privacy in screenshot sharing.

Self-Annotated Dataset: Trained

with over 500 personally annotated instances.

Introduction Methodology Experiment Summary

Deep Learning for Privacy:

Project employs YOLOv8 to boost privacy in screenshot sharing.

Self-Annotated Dataset: Trained with over 500 personally annotated instances.

Promising Results:

Model demonstrates strong performance, indicating potential for wider platform application.

Introduction	Methodology	Experiment	Summary
		=// -// -// -// -// -// -// -// -// -//	

- Challenges and Limitation:
 - Annotation Consistency: standardize the labels precision/location for elements
 - O Dataset Limitations: inherent privacy concerns restricting the training

- Challenges and Limitation:
 - Annotation Consistency: standardize the labels precision/location for elements
 - O Dataset Limitations: inherent privacy concerns restricting the training

- Future Direction:
 - Model and Network Diversity: explore other architectures/models
 - O Dataset Expansion: include screenshots from other applications/different devices
 - **Pipeline Completion:** integrating the trained model into a complete pipeline to also blur/block identified info

Thanks

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**